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Abstract
Solving the inhomogeneous Maxwell equations in the spacetime domain, the
formation of electromagnetic waves by current pulses with high-frequency
filling of finite duration moving along a straight segment with luminal or
subluminal speed is investigated. Being akin to a well-known description
of the travelling-wave antenna, this model is capable of rough description
of artificial and natural line radiators of different nature, including radiation
accompanying absorption of high-energy photons or particles in a medium. For
arbitrary slowly varying envelope of the current pulse, a closed-form quadrature
expression is obtained for the magnetic component of the field, which enables
the entire field to be reconstructed at long distances from the source. This
expression describes well peculiarities of non-stationary electromagnetic waves
due to source-current filling: directionality, frequency transform and beating.
Results obtained may be readily used in the case of scalar waves.

PACS numbers: 41.20.Jb, 03.50.De, 41.60.−m

1. Introduction

In the present work, we extend the well-known model of the travelling-wave line source [1, 2]
to the case of the formation of electromagnetic waves by a pulse with high-frequency filling
moving along a line segment whose physical realization depends on physical realization of
the model. The velocity of the high-frequency (carrier) wave differs from the velocity of the
front and the trailing edge of the pulse. Generation of the electromagnetic waves is described
by solving the inhomogeneous Maxwell equations directly in the spacetime domain: first,
the electric and magnetic field vectors are expressed in terms of one scalar function and then
the resulting hyperbolic-type PDE is solved using incomplete separation of variables and the
Riemann formula (see [3] for details).
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Investigation of a pulse with high-frequency filling moving along a line segment was
stimulated by the problem of launching directional scalar and electromagnetic waves (missiles)
as well as by the results of experimental investigation of superradiation waveforms reported
in [4]. One of the possible realizations of such pulses is linked with the absorption of a spike
pulse of hard radiation by a medium [5] producing anisotropic distribution of photoelectrons
with maximum in the direction of photon pulse propagation. Coordinated motion of the
electrons gives rise to a macroscopic source current whose distribution patterns propagate
with a luminal or superluminal speed [6, 7]. Consideration of finite-mass particles instead of
high-energy photons results in the same model with the subluminal current propagation. As is
discussed in [8], the high-frequency filling that provides coherence to the emanated radiation
may result from stimulated relaxation of a medium preliminary set in a nonequilibrium state.

The model in question can roughly describe a number of traditional artificial as well
as natural line radiators and, being characterized by two different velocities—the phase
velocity of the carrier wave and the source-pulse velocity—explains characteristic features
observed in laboratory and natural conditions for waves emanated by sources with filling:
their directionality, frequency transform and beating. Analytical results obtained for some
important particular cases enable us to describe the formation of interesting localized wave
structures.

2. Basic relations

We assume that the line of current propagation coincides with the z-axis of a cylindrical
coordinate system ρ, ϕ, z whose origin is located in the starting point of the current pulse.
Since the problem has the axial symmetry, the current density vector j can be described as

j = ezjz, jz = δ(ρ)

2πρ
h(z)h(l − z)I (z, τ ), τ > 0 and jz ≡ 0, τ < 0 (1)

where τ = ct is the time variable, c is the velocity of light, δ(ρ) and

h(z) =
{

1, z > 0
0, z < 0

are the Dirac distribution and the Heaviside step function, respectively, and l is the radiator
length.

We will take the total current distribution in the form

I∓ = h(βτ − z)h(z − βτ + βT )U(z, τ ) exp[ik(τ ∓ z)]. (2)

Here, the parameter T is the current-pulse duration, β = v/c ∈ (0, 1], where v is the velocity
of the pulse, U(z, τ ) is an arbitrary differentiable function and k = ω/c, where ω is the angular
frequency. The modulation term is represented in a standard complex exponent notation; from
here on, the real part of the complex expressions should be attributed to the co-sinusoidal
modulation and the imaginary to the sinusoidal modulation.

Expressing the components of the electric induction and the magnetic field strength
vectors, D and H, via the Whittaker–Bromwich potential u [9, 10]

Dρ = ∂2

∂ρ∂z
u, Dz = − ∂2

∂τ 2
u +

∂2

∂z2
u, Hϕ = −c

∂2

∂ρ∂τ
u (3)

and assuming that the initial conditions are

D = H = 0, τ < 0 (4)
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one can obtain from the Maxwell equations the following initial-value problem:(
∂2

∂τ 2
− 1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
− ∂2

∂z2

)
	 = 1

c
jz, 	 ≡ 0, τ < 0 (5)

where the scalar wavefunction 	 = ∂u/∂τ represents the temporal derivative of the Whittaker–
Bromwich potential. The general solution of the above problem was constructed by
Borisov and Utkin [11] using the Smirnov method of incomplete separation of variables
[12]. The variable ρ is separated via the Fourier–Bessel transform (ρ → s) and the
solution of the resulting problem is constructed as a two-dimensional integral with the
help of the Riemann formula [13] (the Riemann function of the PDE, R(τ, z; τ ′, z′) =
J0(s

√
(τ − τ ′)2 − (z − z′)2), is known). Due to the localized nature of the source term and

the specific properties of the Bessel functions composing the integrand, the final expression
for the wavefunction in the ρ, z, τ domain reduces to a one-dimensional integral

	∓ = 1

4πc
eikτ

∫ 
1


2

dz′ 1

[ρ2 + (z − z′)2]1/2
U(z′, τ − [ρ2 ± (z − z′)2] 1/2)

× exp(−ik{[ρ2 + (z − z′)2] 1/2 ± z′}). (6)

Hereinafter, if necessary, the wavefunctions and the components of the electromagnetic field
vectors produced by the total currents I− and I+ are denoted by the subscripts (−) and (+).

The parameters l, T, β, the observation time τ and location ρ, z determine the limits of
integration 
1,2. The following different cases can be distinguished [11]:

(i) 0 < τ − r < T and τ − rl <
l

β

(ii) τ − r > T and τ − rl <
l

β

(iii) 0 < τ − r < T and τ − rl >
l

β

(vi) r < τ − T <
l

β
+ rl and τ − rl >

l

β
.

(7)

Here, r = (ρ2 + z2)1/2 and rl = [ρ2 + (z − l)2]1/2; for τ − r < 0 and τ − T > l/β + rl, we
have 	 ≡ 0. Note that one can obtain all the above inequalities by the geometric treatment
using the causality principle. They correspond to interrelations between

• the positions of two spherical wavefronts emanated from the radiator’s beginning
(ρ = 0, z = 0) by the front and the back of the source pulse at the instants τ = 0
and τ = T , respectively;

• the positions of two spherical wavefronts emanated from the radiator’s end (ρ = 0, z = l)

by the front and the back of the source pulse at the moments τ = l/β and τ = l/β + T ,

respectively;
• the distance from the radiator’s beginning to the observation point r and the distance from

the radiator’s end to the observation point rl.

Initial inequalities are given in table 1.
The expressions for the functions 
1,2 are given in [11]. Using simple algebraic analysis,

one can check that there exists no combination of the pulse parameters that realizes all four
cases (i)–(iv): with the variation of the time parameter τ from zero to infinity, the order of
application of the cases is reduced to (i), (ii) and (iv) (T + r < l/β + rl, a short pulse) or (i),
(iii) and (iv) (the opposite case, a long pulse)—see section 4 of [11] for detailed discussion.
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Table 1. Initial inequalities that define the integration limits for solution (6).

Case Wavefront 1 Wavefront 2 Wavefront 3 Wavefront 4

ψ ≡ 0 τ < r τ − T < r τ − l/β < rl τ − T − l/β < rl

(i) τ > r τ − T < r τ − l/β < rl τ − T − l/β < rl

(ii) τ > r τ − T > r τ − l/β < rl τ − T − l/β < rl

(iii) τ > r τ − T < r τ − l/β > rl τ − T − l/β < rl

(iv) τ > r τ − T > r τ − l/β > rl τ − T − l/β < rl

ψ ≡ 0 τ > r τ − T > r τ − l/β > rl τ − T − l/β > rl

Relations (3) and (6) determine immediately the magnetic field strength component while
definition of the electric induction components in the near zone requires calculation of the
Whittaker–Bromwich potential itself, which leads to integration with respect to the time
variable. This calculation requires separate consideration that is specific to physical realization
of the model (due to the initial conditions for which the charge distribution must be specified)
and will not be discussed in the scope of the present work. The electric induction components
(and, consequently, the entire electromagnetic field) in the far zone, r � l, can be found from
the known magnetic field components (see, for example, [14]). All the subsequent results
can easily be extended to the case of scalar waves, in which the wave process is completely
described by the function 	.

3. The magnetic field strength produced by the total current distribution I−

The continuous factor of the total current distribution I− has the form

U(z, τ ) exp[ik(τ − z)]. (8)

One can write the function U(z, τ ) as a function of the variables τ −z and τ +z. Then, the factor
U [z, τ − [ρ2 + (z − z′)2]1/2] in integral (6) turns into U [τ − [ρ2 + (z − z′)2]1/2 − z′, τ − [ρ2 +
(z− z′)2]1/2 + z′]. Using the change of the integration variable ξ ′

1 = τ − [ρ2 + (z− z′)2]1/2 − z′

we obtain

	 = 1

4πc

∫ 
2


1

dξ ′
1

1

τ − z − ξ ′
1

U

(
ξ ′

1, τ + z − ρ2

τ − z − ξ ′
1

)
eikξ ′

1 . (9)

Assuming that the function U is a slowly varying function, the expression

q(ξ ′
1) = 1

τ − z − ξ ′
1

U

(
ξ ′

1, τ + z − ρ2

τ − z − ξ ′
1

)
is the continuous function and q ′(ξ ′

1) is the absolutely integrable function, one can obtain from
(9) the description of the wavefunction by integration by parts [15]

	− ∼= i

4πck

[
1

τ − z − 
1
U

(

1, τ + z − ρ2

τ − z − 
1

)
eik
1

− 1

τ − z − 
2
U

(

2, τ + z − ρ2

τ − z − 
2

)
eik
2

]
+ o

(
1

kl

)
. (10)

Hence, using the relation Hϕ = −c∂	/∂ρ (3) we have

Hϕ
∼= 1

4π

[
1

τ − z − 
1

∂
1

∂ρ
U

(

1, τ − z − ρ2

τ − z − 
1

)
eik
1

− 1

τ − z − 
2

∂
2

∂ρ
U

(

2, τ + z − ρ2

τ − z − 
2

)
eik
2

]
. (11)
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In the particular case when the function U in relation (8) is the function of only one variable
τ − z, the above result becomes an exact solution of the electrodynamic problem.

Case (i). In this case, we have


1 = 

(i)
1 =

(
1 − β

1 + β

)1/2 [
τβ −

√
ρ2 + z2

β

]
, 
2 = 


(i)
2 = τ −

√
ρ2 + z2 (12)

where τβ and zβ are the variables of the frame of reference moving with the velocity v = βc

in the direction of the current-pulse motion

τβ = τ − βz√
1 − β2

, zβ = z − βτ√
1 − β2

.

From (11) and (12), we get

Hϕ
∼= 1

4π

ρ

r(r − z)
U(0) exp[ik(τ − r)] − 1

4π

ρ

rβ(rβ − zβ)
U(β)

× exp

[
ik

(
1 − β

1 + β

)1/2

(τβ − rβ)

]
= Hϕ−(0) − Hϕ−(β) (13)

where r =
√

ρ2 + z2, rβ =
√

ρ2 + z2
β, U(0) = U(τ − r, τ − r) and

U(β) = U

((
1 − β

1 + β

)1/2

(τβ − rβ),

(
1 + β

1 − β

)1/2

(τβ − rβ)

)
.

Using the spherical coordinates r, θ, φ and rβ, θβ, φ, defined so that ρ = r sin θ = rβ sin θβ,

z = r cos θ and zβ = rβ cos θβ, one can represent the factors ρ/(r − z) and ρ/(rβ − zβ) as
the angular coefficients R(θ) = sin θ/(1 − cos θ) and R(θβ) = sin θβ/(1 − cos θβ). Note that
rβ and θβ are the time-dependent functions. The angular coefficients in the above relation
are convenient for the preliminary analysis of the spacetime structure of generated waves.
However, the detailed investigation requires the transition to the variables ρ, ϕ, z of the initial
frame of reference.

One can see from expressions (13) that

1. The angular factors R(θ) and R(θβ) tend to zero as θ → π and θβ → π, respectively,
hence Hϕ = 0, if z ∈ (0,−∞), ρ = 0.

2. The factors R(θ) and R(θβ) are infinite when θ → 0 and θβ → 0,, and therefore it is
necessary to analyse the limit of Hϕ in detail. It is evident that Hϕ is equal to zero, if
U = const and k = 0.

3. When θ = 0 and θβ = π, the factors R(θ) and R(θβ) become infinite and zero,
respectively, hence the segment z ∈ (0, βτ), ρ = 0 is the domain where Hϕ is infinite
(the domain of the source).

4. It is possible to achieve directionality of the waves produced by the current pulse I−,

provided that the angles θ and θβ are small.
5. Using the variables τ, ρ, z, one can check that the factor

1

rβ

R(θβ) ∼= (1 − β2)ρ

2(βτ − z)2
+ o[(1 − β2)2]

and the argument(
1 − β

1 + β

)1/2

(τβ − rβ) ∼= 1 − β

1 + β

[
τ + z − ρ2 1 + β

2(βτ − z)

]
+ o(1 − β2)

tend to zero as β → 1 (here z < βτ ). Hence, the second term in expression (13), Hϕ−(β),

equals zero, if the factor U(β) remains finite as β → 1− (the superluminar velocities are
not considered in this work and from here on we denote β → 1− as β → 1).
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6. The frequency transform is observed in the second term Hϕ−(β) of expression (13).
Rewriting expression k((1 − β)/(1 + β))1/2(τβ − rβ) in the variables of the initial
frame, one can find the limiting values of the transformed frequency: ωβ = ω if
θ = 0(z > βτ, ρ = 0) and ωβ = ((1 − β)/(1 + β))ω when θ = π(z < 0, ρ = 0) :
the frequency shift towards the red spectrum region. Here, ωβ = ckβ is the frequency
of the initial frame. Note that formula (13) yields the maximum value of the red shift
for the radiation emitted in the direction opposite to the direction of the movement of the
current-pulse front.

Case (ii). The limits of integration are



(ii)
1 = 


(i)
1 , 


(ii)
2 = T +

(
1 − β

1 + β

)1/2

(τT − rT ). (14)

In the expression for the upper limit, we use the variable transform

τT = τ − T − βz√
1 − β2

, zT = z − β(τ − T )√
1 − β2

and define rT =
√

ρ2 + z2
T . (15)

From relations (11), (14) and (15) we can write

Hϕ
∼= 1

4π

ρ

rT (rT − zT )
U(T ) exp

{
ik

[
T +

(
1 − β

1 + β

)1/2

(τT − rT )

]}
− Hϕ−(β)

= Hϕ−(T ) − Hϕ−(β)

U(T ) = U

[
T +

(
1 − β

1 + β

)1/2

(τT − rT ), T +

(
1 + β

1 − β

)1/2

(τT − rT )

]
. (16)

Using the spherical coordinates rT , θT , ϕ defined so that ρ = rT sin θT and zT = rT cos θT ,

one can represent the factor ρ/(rT − zT ) as an angular coefficient

R(θT ) = sin θT

1 − cos θT

.

The results of the preliminary analysis are the following:

1. In relation (16), the angular factors R(θβ) and R(θT ) are equal to zero if θβ = θT = π,

hence Hϕ = 0 on the line ρ = 0 when z < β(τ − T ).

2. When θβ = π while θT = 0, the magnetic field component is infinite. It is not surprising
bearing in mind that the segment [β(τ − T ), βτ ] of the 0z-axis is the source domain.

3. The wave directionality is observed when θβ and θT are small but not equal to zero.
4. We have the same frequency transform for the both terms, the limiting values of the

frequencies ωβ = ω((1 − β)/(1 + β)) and ωβ = ω are observed for θ = π and θ = 0
(the ‘red’ shift of the frequency).

5. The terms Hϕ−(β) and Hϕ−(T )tend to zero as β → 1, hence Hϕ is equal to zero.

Case (iii). The expressions for the limits of integration are



(iii)
1 = τ − l −

√
ρ2 + (z − l)2, 


(iii)
2 = 


(i)
2 . (17)

Using the above relations as well as the expressions (3) and (11), one can obtain

Hϕ
∼= Hϕ−(0) − 1

4π

ρ

rl(rl − zl)
U(l) exp[ik(τ − rl − l)] = Hϕ−(0) − Hϕ−(l) (18)

where the factor U(l) = U(τ − rl − l, τ − rl + l). Here, we use notation zl = z − l and

rl =
√

ρ2 + z2
l . Again, in the spherical coordinate system rl, θl, ϕ, in which ρ = rl sin θl and

zl = rl cos θl, the angular factor can be expressed as

R(θl) = ρ

rl − zl

= sin θl

1 − cos θl

.
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We see that Hϕ is infinite on the segment z ∈ [0, l] of the line ρ = 0 (the source domain) and
the frequency transform is not observed.

Case (iv). In this case, we have the limits of integration



(iv)
1 = 


(iii)
1 , 


(iv)
2 = 


(ii)
2 . (19)

Using relation (11) as well as the terms Hϕ−(T ) and Hϕ−(l) in expressions (16) and (18), we
can write the magnetic field strength component as

Hϕ
∼= Hϕ−(T ) − Hϕ−(l). (20)

In the spacetime domain (iv), the above solution is infinite on the segment z ∈ [β(τ − T ), l]
of the line ρ = 0. In the first term of the above relation we have the frequency transform, but
this term is zero if β = 1.

We obtain expressions (13), (16), (18) and (20) from relation (11), hence the above results
are the exact solutions of the Maxwell equations in the particular case of the factor U in (8)
expressed in the form U = U(τ − z). Otherwise, the approximate relations describing the
terms Hϕ−(β) and Hϕ−(T ) in the limit β → 1 require special consideration for each slowly
varying function U(τ, z) 	= U(τ − z).

Emanated wave structure for the case of a rectangular envelope U(z, τ ) = U0 = const is
depicted in figure 1. As far as conditions (7) and even the condition defining the pulse type are
inherently local, this figure illustrates all the structural forms of the magnetic field—cases (i)–
(iv), equations (13), (16), (18) and (20)—for both sort and long pulse types: different formulae
are applied for different spacetime domains. The chosen parameters of wave generation,
kl = 200, T / l = 0.3 and β = 0.9, are close to those of the experiments described by Egorov
et al [4]. Phenomena linked with the wave localization and frequency transform will be
discussed in details in section 5.

4. The magnetic field strength produced by the total current distribution I+

Here, we assume that the continuous factor of the current distribution (2) is

U(τ, z) exp[ik(τ + z)]. (21)

Changing the integration variable in expression (9) to x = ρ2/(τ − z − ξ ′
1) we obtain

	+ = 1

4πc
exp(ik(τ + z))

∫ F2

F1

dx
1

x
U

(
τ − z − ρ2

x
, τ + z − x

)
e−ikx (22)

where the integration limits are

Case (i):

F
(i)
1 =

(
1 + β

1 − β

)1/2

(rβ + zβ) and F
(i)
2 = r + z. (23)

Case (ii):

F
(ii)
1 = F

(i)
1 and F

(ii)
2 =

(
1 + β

1 − β

)1/2

(rT + zT ). (24)

Case (iii):

F
(iii)
1 = rl + zl and F

(iii)
2 = F

(i)
2 . (25)

Case (iv):

F
(iv)
1 = F

(iii)
1 and F

(iv)
2 = F

(ii)
2 . (26)
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(a) (b)

(c) (d )

Z* Z*
p*

Z*
p*Z*

H
* φ

p*

p*

H
* φ

H
* φ

H
* φ

Figure 1. Emanated wave structure for the case of a rectangular envelope, U(z, τ) = U0 = const,
represented in the dimensionless form: z∗ = z/l, ρ∗ = ρ/l, H ∗

ϕ = Hϕ l/U0. Modulation factor
is cos[k(τ − z)], kl = 200, T /l = 0.3, β = 0.9; τ/l = 0.1 (a), 0.5 (b), 1 (c) and 2 (d).

Assuming that q(x) = U(x)/x and q ′(x) are the continuous and absolutely integrable
functions, respectively, we obtain from expression (22) the relation

	+ ∼= i

4πck
exp(ik(τ + z))

{
1

F1
U

(
τ − z − ρ2

F1
, τ + z − F1

)
e−ikF1

− 1

F2
U

(
τ − z − ρ2

F2
, τ + z − F2

)
e−ikF2

}
+ o

(
1

kl

)
. (27)

Hence, using relation (3), one gets the approximate expression for the magnetic strength
component

Hϕ
∼= i

4π
exp(ik(τ + z))

{
1

F1

∂F1

∂ρ
U

(
τ − z − ρ2

F1
, τ + z − F1

)
e−ikF1

− 1

F2

∂F2

∂ρ
U

(
τ − z − ρ2

F2
, τ + z − F2

)
e−ikF2

}
(28)

which is the exact solution of the electrodynamic problem for the case when the amplitude
U(z, τ ) in the expression for the current distribution (21) is taken as the function of the
variable τ + z only. Then the factors U in the above relation are the functions of one argument
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τ + z −F1,2. Depending on the interrelations between the radiator parameters, the observation
time and location, the Hϕ component of the field is described by the following expressions:

Case (i):

Hϕ
∼= 1

4π

rβ − zβ

rβρ
U(β) exp

[
ik

(
1 + β

1 − β

)1/2

(τβ − rβ)

]

− 1

4π

r − z

rρ
U(0) exp(ik(τ − r)) = Hϕ+(β) − Hϕ+(0). (29)

Case (ii):

Hϕ
∼= Hϕ+(β) − 1

4π

rT − zT

rT ρ
U(T ) exp

{
ik

[
T +

(
1 + β

1 − β

)1/2

(τT − rT )

]}

= Hϕ+(β) − Hϕ+(T ). (30)

Case (iii):

Hϕ
∼= 1

4π

rl − zl

rlρ
U(l) exp(ik(τ − rl + l)) − Hϕ+(0) = Hϕ+(l) − Hϕ+(0). (31)

Case (iv):

Hϕ
∼= Hϕ+(l) − Hϕ+(T ). (32)

The peculiarities of the wave structure generated by the current distribution I+ for the case
of a rectangular envelope (analogous to that illustrated in the previous section for the current
distribution I− in figure 1) are depicted in figure 2. General results yielded by relations
(29)–(32) are the following:

1. The angular factors R+ in the above expressions and the factors R− of section 3 satisfy
the relation R+ = 1/R−. Hence, the angular distributions of the waves generated by the
sources with the total current I− and I+ differ essentially. For example, in case (i) the
coefficients R+(θβ) and R+(θ) are equal to zero when θβ = θ = 0 (as it was mentioned
earlier, in this situation R−(θβ) and R−(θ) are infinite, see section 3).

2. In sections 3 and 4, the factors U have the identical arguments for the corresponding cases.
3. The directionality of the waves produced by the current pulse described by expression

(1) involving the continuous factor (21) is observed for the angles close to π , i.e. in the
direction opposite to that of the current-pulse propagation (see figure 2(d) illustrating the
wave dynamics after the end of the current pulse, τ > T + l/β).

4. One can see the frequency transform in the cases (i), (ii) and (iv). The limiting values of
the frequency are ω((1 + β)/(1 −β)) if θ = 0 and ω if θ = π (β 	= 1). Here, we have the
frequency shift towards the violet spectrum region (the violet shift), which is maximal in
the direction of the pulse front movement. The special case of β = 1 requires particular
consideration.

5. For β = 1, the spacetime structure of the waves generated by the total current I+ requires
the detailed investigation.

5. The far-field radiation characteristic and the frequency transform

Here, we discuss the essential peculiarities of the generated waves, namely, the directionality
and the frequency transform. We compare the waves produced by the long and short source-
current pulses in the case of both the total current distributions I− and I+. The special features
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Figure 2. Emanated wave structure for the case of a rectangular envelope, U(z, τ) = U0 = const,
represented in the dimensionless form: z∗ = z/l, ρ∗ = ρ/l, H ∗

ϕ = Hϕ l/U0. Modulation factor
is cos[k(τ + z)], kl = 200, T /l = 0.3, β = 0.9; τ/l = 0.1 (a), 0.5 (b), 1 (c) and 2 (d).

of the electromagnetic field generated by the pulses of different durations manifest themselves
in the cases (ii) and (iii), therefore we give the main attention to the investigation of expressions
(16), (18), (30) and (31).

5.1. Long current pulse

Let us assume that r � l, then

rl
∼= r

(
1 − l

r
cos θ

)
, rl − zl

∼= r(1 − cos θ)

(
1 +

l

r

)
,

rl ± l ∼= r

[
1 ± l

r
(1 ∓ cos θ)

]
. (33)

In case (iii), using the above relations, from expressions (18) and (30) one can obtain,
respectively,

Hϕ− ∼= 1

4πr
R−(θ) U(0){exp[ik(τ − r)] − exp[ik(τ − r − l(1 − cos θ))]}

and

Hϕ+ ∼= 1

4πr
R+(θ) U(0){exp[ik(τ − r + l(1 + cos θ))] − exp[ik(τ − r)]}.

(34)

Hence, for the intensity of the electromagnetic waves we have

J− = J0

(
U(0)

r

)2

cot2
θ

2
sin2

(
kl

1 − cos θ

2

)
(35)
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and

J+ = J0

(
U(0)

r

)2

tan2 θ

2
sin2

(
kl

1 + cos θ

2

)
(36)

where J0 = (8π2εc)−1 and ε is the permittivity of the medium.
From here on, we assume that kl � 1. The angular factors in the above expressions

determine the wave directionality and the maxima and minima of the interference pattern,
respectively. According to formula (35), the intensity distribution J− is maximal for small
angles θ , i.e. in the direction of the current-pulse movement (but is zero for θ = 0), and
decreases sharply with an increase of the polar angle. The positions of maxima of the
interference pattern, θn, are determined by the relation (1 + cos θn)/2 = (2n + 1)π/2kl, that
can be rewritten as sin2(θn/2) = (2n + 1)(π/2kl) = (2n + 1)λ/4l or in the region of the
maximal directionality of radiation, where θ is small, by θ2

n = (2n + 1)λ/l. Here, λ = 2π/k

is the wavelength of the radiation emitted by the oscillators forming the current and n is an
integer.

Considering the angular dependence of the distribution J+, let us pass to the angle
α = π − θ. Then, the angular coefficient in formula (36) takes the same form as in (35),
cot2(α/2) sin2((1/2)kl(1−cos α)). Hence, we find that the maximum radiation is formed in the
direction opposite to that of the movement of the current-pulse front (but J+ = 0, if α = π ), and
maxima of the interference pattern are determined by the relation sin2(αn/2) = (2n + 1)λ/4l

or, in the vicinity of θ = π, by α2
n = (2n + 1)λ/l.

The distinguished peculiarities take place for slowly varying amplitude factors of the
current U(z, τ ) and under the assumptions made in sections 3 and 4. Note that these
peculiarities are caused by the high-frequency oscillations of the current and akin effects
known for sources of the travelling-wave type. The possibility of the formation of the
directional waves for k = ∞ (ω = 0) requires separate consideration.

5.2. Short current pulse

The peculiarities of the electromagnetic field generated by the short current pulse, which
differ from known cases, manifest themselves in case (ii). We consider the interference of the
excited waves, assuming that rβ � βT

/√
1 − β2. Then using the variables of the frame of

reference moving with the velocity v = βc, one can obtain the approximate expressions

rT
∼= rβ +

β cos θβ√
1 − β2

T +
(βT )2

2rβ(1 − β2)
,

τT − rT
∼= τβ − rβ − 1 + β cos θβ√

1 − β2
T − (βT )2

2rβ(1 − β2)

rT − zT
∼= (rβ − τβ)(1 − cos θβ) +

(βT )2

2rβ(1 − β2)

T +

(
1 − β

1 + β

)1/2

(τT − rT ) ∼=
(

1 −β

1 + β

)1/2 [
τβ − rβ +

β(1 − cos θβ)

1 + β
T − (βT )2

2rβ(1 − β2)

]

T +

(
1 + β

1 − β

)1/2

(τT − rT ) ∼=
(

1 + β

1 − β

)1/2 [
τβ − rβ − β(1 + cos θβ)

1 − β
T − (βT )2

2rβ(1 − β2)

]
.

(37)

Assuming that β 	= 1, we may omit the last item in each of these relations. Being expressed
via the variables τβ and rβ, the conditions necessary for the realization of the case (ii) take the
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form

ρ2 + (zβ + βT /
√

1 − β2)2 < (τβ − T/
√

1 − β2)2 and (τβ − l
√

1 − β2/β)2 < r2
β

(38)

and when rβ � βT /
√

1 − β2 we arrive at the approximate relation for the first inequality

τβ − rβ � T√
1 − β2

+
(βT )2

2rβ(1 − β2)
.

Then using relations (16) and (30), one can obtain

Hϕ− ∼= 1

4π rβ

R−(β)U(β) exp

[
ik

(
1 − β

1 + β

)1/2

(τβ − rβ)

] {
exp

[
ikT

β(1 − cos θβ)

1 + β

]
− 1

}
(39)

Hϕ+ ∼= 1

4πrβ

R+(β)U(β) exp

[
ik

(
1 + β

1 − β

)1/2

(τβ − rβ)

]{
1 − exp

[
−ikT

β(1 + cos θβ)

1 − β

]}
.

(40)

So, for the intensity of the electromagnetic waves we have the following expressions:

J− = J0
1

r2
β

U 2(β) cot2
θβ

2
sin2

(
kT

β(1 − cos θβ)

2(1 + β)

)
(41)

and

J+ = J0
1

r2
β

U 2(β) tan2 θβ

2
sin2

(
kT

β(1 + cos θβ)

2(1 − β)

)
. (42)

The angular factors describe the directionality of radiation, which for J− coincides with the
direction of the current-pulse movement (θβ

∼= 0) and is opposite for J+ (θβ
∼= π). The second

factors describe the interference pattern. For the case of J−, the positions of maxima of the
interference pattern in the vicinity of maxima of the directionality factor (small angles θβ)
correspond to θ2

βn = (2n + 1)((1 + β)/β)(λ/T ). As in the case of long current pulse, the wave
directionality is observed in the vicinity of θβ = π or, equally, αβ = 0 (αβ = π−θβ). Here, the
maxima of the interference pattern are given by the formula α2

βn = (2n+ 1)((1−β)/β)(λ/T ).

When the current-pulse velocity is small (β � 1), the simple relations

J− ∼= J0
1

r2
U 2(0) cot2

θ

2
sin2

(
kTβ

1 − cos θ

2

)

J+ ∼= J0
1

r2
U 2(0) tan2 θ

2
sin2

(
kTβ

1 + cos θ

2

) (43)

are valid. In this case, for the frame of reference at rest and small angles θ or α = π − θ,

the frequency shift �± in the direction corresponding to the maximal intensity (i.e. forward
for J− and backward for J+ with respect to the direction of the current-pulse motion) will be
described, respectively, by the following relations:

�− ∼= − 1
2ωβθ2 the red shift,

�+ ∼= 1
2ωβθ2 the violet shift.

(44)

Note that for the certain relations between the parameters l, β and T, the case (ii) is not realized
for polar angles in the vicinity of zero, 0 � θ � θ̃ , θ̃ = θ̃ (l, β, T ). Then the maximum of
the radiation intensity J− occurs for some angle θβn exceeding θ̃ and only the higher orders
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of the interference pattern can be observed, which are characterized by a smaller intensity,
but a larger value of the frequency shift. This effect cannot take place, in principle, for
electromagnetic waves produced by the source current I+: here, the location of maximum of
the radiation intensity always corresponds to θ ∼ π.

5.3. Beatings

From the general formulae of sections 3 and 4, one can see that for the cases (i) and (iv), in
the spacetime domain determined by inequalities (7), the waves with two different frequencies
are excited. This can lead to the formation of beatings. Here, we will restrict ourselves to
the discussion of the case (i) for the total current I−, since the analysis of the other cases is
analogous and does not lead to the radically different results. Assuming that β � 1, we can
obtain from relation (13)

Hϕ
∼= i

2πr

sin θ

1 − cos θ
U(0) exp

[
i

(
k − �k

2

)
(τ − r)

]
sin

[
�k

2
(τ − r)

]
(45)

where c�k = ωβ(1 − cos θ) is the frequency shift. Assuming that the temporal scale
characterizing the resolution of the time detection system T0 satisfies the inequalities1/k � T0

and T0 � 1/(�k) and, consequently, the averaged last factor in formula (45) is a slowly varying
function, we arrive at the expression for the intensity distribution

J− ∼= J0
1

2r2
U 2(0) cot2

θ

2
sin2

[
�k

2
(τ − r)

]
(46)

describing the oscillations with the frequency equal to one-half of the frequency shift for the
excited waves.

Note that for high velocities of the current-pulse motion, when β ∼= 1, the structure of
the beatings is more complicated by virtue of the substantial difference between the factors
R−(θ)/r and R−(θβ)/rβ. In this case, in the limit β → 1, according to relation (13), the term
Hϕ−(β) depending on the velocity of the current-pulse motion tends to zero as β → 1.

5.4. Possibility of localized wave generation

Let us discuss the expressions describing the waves generated by the current I− in the limit
β → 1. We assume that the envelope of the current oscillations is a function of the variable
τ − z only:

U(τ, z) = Ũ (τ − z).

Remembering that the factors R−(θβ)/rβ and R−(θT )/rT tend to zero as β → 1, one can see
that the terms of the magnetic field component Hϕ−(β) and Hϕ−(T ) are equal to zero. Then
from the expressions (13), (16), (18) and (20) we find

Case (i):

Hϕ = Hϕ−(0)

Case (ii):

Hϕ = 0

Case (iii):

Hϕ = Hϕ−(0) − Hϕ−(l)

Case (iv):

Hϕ = −Hϕ−(l). (47)
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Here, the factors defining the field components are expressed via one-argument function Ũ as
follows:

U(0) = Ũ (τ − z), U(l) = Ũ (τ − rl − l).

If the electromagnetic waves are formed by the total current I+ and the envelope factor of the
current is the function of the variable τ + z only, U(τ, z) = Ũ (τ + z), we have essentially
different result. When β → 1, one can obtain that the factors R+(θβ)/rβ and R+(θT )/rT tend
to 2/ρ, whereas the functions [(1 + β)/(1 −β)]1/2(τβ − rβ) and [(1 + β)/(1 −β)]1/2(τT − rT )

tend to the values s = τ + z − ρ2/(τ − z) and s(T ) = τ − T + z − ρ2/(τ − T − z),

respectively. Hence, the terms Hϕ+(β) and Hϕ+(T ) become

Hϕ+(β) = 1

2πρ
Ũ(s) exp(iks) and Hϕ+(T ) = 1

2πρ
Ũ(s(T )) exp(iks(T )) (48)

when β tends to unity. Then from relations (29)–(32) we have

Case (i): when the spacetime domain is determined by the inequalities 0 < τ − r < T and
τ − rl < l

Hϕ = 1

2πρ
Ũ(s) exp(iks) − Hϕ+(0) (49)

where the last term reduces to

Hϕ+(0) = 1

4π

r − z

rρ
Ũ(τ − r) exp(ik(τ − r)).

Case (ii): if τ − r > T and τ − rl < l

Hϕ = 1

2πρ
[Ũ (s) exp(iks) − Ũ (s(T )) exp(iks(T ))]. (50)

Case (iii): in the case of the opposite inequalities τ − r < T and τ − rl > l

Hϕ = Hϕ+(l) − Hϕ+(0) (51)

where the first term reduces to

Hϕ+(l) = 1

4π

rl − zl

rlρ
Ũ(τ − rl + l) exp(ik(τ − rl + l)).

Case (iv): finally, for r < τ − T < l + rl and τ − rl > l

Hϕ = Hϕ+(l) − 1

2πρ
Ũ(s(T )) exp(iks(T )). (52)

When the spacetime domains are determined by the inequalities r > τ or τ − r > T + l, the
components of the electromagnetic field are equal to zero.

One can see from the above inequalities that every pulse should be classified as a long
one when ρ tends to zero and z > l [11]. Expressions (49), (50) and (51) involve the terms
(48) containing the functions of the arguments s and s(T ), which is typical for representation
of the localized waves produced by a current pulses moving along a straight line [11, 16].

6. Conclusion

Consideration carried out in this work deals with the arbitrary-shaped envelope of the
source-current pulse, yielding general quadrature formulae and some simpler particular
approximations for the magnetic field strength component Hϕ. It is based on the method
of incomplete separation of variables, which requires more elaborate treatment than the
conventional approach of Rothwell et al [2] using the retarded potentials. However, here
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the incomplete separation of variables provides a formal scheme of definitions of all possible
regimes (cases) that appears in calculation of the solution. The scheme is based on two-
dimensional analysis, involving one temporal and one spatial variable that is left non-separated.
For the retarded potential, as far as the space variables are not separated, the same consideration
(linked with the explicit representation of the retarded arguments) should be done, in general,
in the space of four dimensions. In the case in question, the cylindrical symmetry admits
consideration of the retarded arguments in the 3D space ρ, z, τ, which, as well as the Liénard–
Wiechert potential approach, leads to simple, analysable relations only for the source pulse
depending entirely on the retarded argument, I (z, τ ) = I (z − βτ). Notably, in the case in
question, the finite duration of the current pulse (0 � τ � T ) and the finite length of the
radiative segment (0 � z � l) manifest themselves, explicitly or implicitly, in factors such as
h(τ), h(T −τ), h(z) and h(l −z), so tracking of the wavefronts via the explicit representation
of the integration limits in corresponding time convolutions leads to relations of the same
complexity as those obtained within the scope of incomplete separation of variables.

This work is one more step towards adapting the general solution to the resulting initial-
value problem, reported in [11, 17], for more and more specific and practical situations
[3, 18–20], in which the solving scheme yields increasingly complicated quadrature formulae
that yet define explicitly the wavefront location and are more suitable for analysis than higher
order integrals or series resulted from complete separation of variables or particular numerical
results. In contrast to the general consideration [11], based on representation of the current
distribution I (z, τ ) in the form

I (z, τ ) = J (z, τ )h(zf(τ ) − z)h(z − zb(τ )) (53)

where zf(τ ) and zb(τ ) denote the coordinates of the front and back, explicit representation
of the current as a pulse of duration T propagating at constant velocity βc, zf(τ ) = βτ and
zb(τ ) = β(τ − T ), and separation of the modulating factor from the envelope U(z, τ ),

J (z, τ ) = U(z, τ ) exp[ik(τ ± z)], enable one to illustrate and analytically describe the
following phenomena:

• Directionality of the emanated waves.
• Transformation of the frequency of the electromagnetic wave carrier with respect to the

initial frequency of the source-current modulation, which takes place for certain wave
regimes and manifests itself as the red or ultraviolet shift for the modulation factors
exp[ik(τ − z)] and exp[ik(τ + z)] correspondingly.

• In the spacetime domains determined by cases (i) and (iv) of inequalities (7), the waves
of two different frequencies, fundamental and shifted, are excited, which in definite
circumstances leads to the formation of beating-type interferential patterns. The structure
of these beatings become more and more complicated as the current-pulse velocity tends
to the velocity of light, β → 1.

Investigation of the electromagnetic field structure was carried out only for the magnetic field
strength component as definition of Hϕ does not require knowledge of the electric charge
distribution and can be made within the same scheme for all pertinent physical models of the
modulated source current discussed in the introduction. Calculation of the electric induction
in the near zone requires separate consideration carried out on the basis of the Whittaker–
Bromwich potential rather than its temporal derivative, and yields different results for the
wire antenna model and models connected with macroscopic current formation accompanying
absorption of hard radiation by a medium—due to the presence of the point charges at
the end points of the wire segment in the former case. Even in the simplest case, this
consideration requires analytical calculations akin to those made in sections 2–4; for this
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reason, consideration of the electric filed component in the near zone goes beyond the scope
of the present work. In the far zone, r � l, the amplitude of the electric induction is
proportional to the amplitude of the magnetic field strength while the electromagnetic energy
density is proportional to H 2

ϕ and thus can easily be estimated. Hence, the above discussion
of the peculiarities of the emanated electromagnetic wave structure made on the basis of the
magnetic component only is complete for the observation points situated sufficiently far from
the radiative segment ρ = 0, 0 � z � l. As far as equation (6) represents the scalar wave
equation in the cylindrical coordinates, all the results obtained can easily be extended to the
case of scalar (e.g. acoustic) waves, the wave process being completely described by the
function 	 in both near and far zones.

It should be noted that

1. For the case of the source pulse moving at the velocity of light, β = 1, the explicit
analytical solution can be obtained [17].

2. This solution depends continuously on β and can be treated as a sufficiently good
approximation for the case β < 1 and 1 − β � 1 [17].

3. For the case of different types of the sinusoidal envelope, the explicit analytical solution
can be obtained by representation of the sine (cosine) factor via exponential terms, which
finally leads only to some additional frequency shift in the resulting formulae. However,
the final relations are too complex to be discussed in detail within the scope of this work.

4. The treatment was carried out for the case in which the dimensionless velocity of the
pulse front, v/c, lies within the segment (0, 1] and the oscillation wave number is
k = ω/c. Investigation of the general solution in the case of arbitrary phase velocity
υ ∈ (0,∞), k = ω/υ can be done within the framework of the same solving scheme.
However, it requires separate consideration (that will be reported elsewhere) as the resulted
waves have different structure.
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